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Biochars immobilize soil cadmium, but do not improve
growth of emergent wetland species Juncus subsecundus
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Abstract
Purpose An addition of biochar mixed into the substrate of
constructed wetlands may alleviate toxicity of metals such
as cadmium (Cd) to emergent wetland plants, leading to a
better performance in terms of pollutant removal from
wastewater. The objective of this study was to investigate
the impact of biochars on soil Cd immobilization and phy-
toavailability, growth of plants, and Cd concentration, accumu-
lation, and translocation in plant tissues in Cd-contaminated
soils under waterlogged conditions.
Materials and methods A glasshouse experiment was con-
ducted to investigate the effect of biochars derived from
different organic sources (pyrolysis of oil mallee plants or
wheat chaff at 550 °C) with varied application amounts (0,
0.5, and 5 % w/w) on mitigating Cd (0, 10, and 50 mg kg−1)
toxicity to Juncus subsecundus under waterlogged soil con-
dition. Soil pH and CaCl2/EDTA-extractable soil Cd were
determined before and after plant growth. Plant shoot num-
ber and height were monitored during the experiment. The
total root length and dry weight of aboveground and below-
ground tissues were recorded. The concentration of Cd in
plant tissues was determined.
Results and discussion After 3 weeks of soil incubation, pH
increased and CaCl2-extractable Cd decreased significantly

with biochar additions. After 9 weeks of plant growth, biochar
additions significantly increased soil pH and electrical con-
ductivity and reduced CaCl2-extractable Cd. EDTA-
extractable soil Cd significantly decreased with biochar addi-
tions (except for oil mallee biochar at the low application rate)
in the high-Cd treatment, but not in the low-Cd treatment.
Growth and biomass significantly decreased with Cd addi-
tions, and biochar additions did not significantly improve
plant growth regardless of biochar type or application rate.
The concentration, accumulation, and translocation of Cd in
plants were significantly influenced by the interaction of Cd
and biochar treatments. The addition of biochars reduced Cd
accumulation, but less so Cd translocation in plants, at least in
the low-Cd-contaminated soils.
Conclusions Biochars immobilized soil Cd, but did not
improve growth of the emergent wetland plant species at
the early growth stage, probably due to the interaction
between biochars and waterlogged environment. Further
study is needed to elucidate the underlying mechanisms.

Keywords Biochar . Cadmium . Constructed wetland .

Juncus subsecundus . Waterlogging

1 Introduction

Wastewater has been used for agricultural irrigation in arid
and semiarid regions due to a lack of clean freshwater.
However, as one of unexpected side effects, large areas of
soils were contaminated by heavy metals such as cadmium
(Cd) because of the common practice to discharge a large
volume of wastewater either untreated or after minimal
preliminary treatments (Sun et al. 2009). Hence, it is neces-
sary to treat wastewater before use due to potential delete-
rious impacts on human and environment health associated
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with the use of wastewater containing pollutants such as
metals.

Constructed wetlands for treating wastewater are an impor-
tant phytoremediation technology around the world (Tel-Or
and Forni 2011). The presence of wetland plants is one of the
most conspicuous features of constructed wetlands in contrast
to soil-only filters (Vymazal 2011). Wetland plants can en-
hance metal removal and/or stabilization (Weis and Weis
2004). Hence, successful phytoremediation using constructed
wetlands depends on the tolerance of wetland plants to the
contaminants in wastewater and/or substrate. Although the
removal of pollutants may be satisfactory in constructed wet-
lands, some pollutants such as metals (e.g., Cd) may accumu-
late in the substrate when wetlands are exposed to wastewater
over long periods of time (Marchand et al. 2010). The presence
of metals in the substrate could influence growth of wetland
plants and pollutant removal in the constructed wetlands
(Zhang et al. 2011b, 2012b).

Amendments are used to reduce the bioavailability of
metals in the soils and waters by immobilizing them into
stable forms (Kumpiene et al. 2008). Organic materials are
popular amendments because they are derived from biological
matter and often require little pretreatment before they are
applied directly to soil (Park et al. 2011b). Biochar is the
product of pyrolysis, whereby organic materials of either plant
or animal origin are heated (>250 °C) in a low or no oxygen
environment (Antal and Grønli 2003). The properties of bio-
chars produced from different feedstocks and by a variety of
processes can vary widely (Brewer et al. 2011; Meyer et al.
2011; Schimmelpfennig and Glaser 2012). The application of
biochar has attracted tremendous research interest in seques-
tering carbon in the form of thermally stabilized biomass (Sohi
et al. 2010; Meyer et al. 2011). Recently, the benefits associ-
ated with soil application of biochars beyond their high carbon
(C) content, such as their soil conditioning properties, have
been reported (Glaser et al. 2002; Libra et al. 2011; Sohi et al.
2010). Biochars have demonstrated a clear potential for the
remediation of a variety of organic (e.g., polynuclear aromatic
hydrocarbons) and inorganic pollutants (e.g., metals) present
in soils and waters (Barrow 2012; Beesley et al. 2011; Fellet et
al. 2011; Jones et al. 2011; Rakowska et al. 2012). Depending
on the feedstock and pyrolysis conditions used to produce
biochar, biochar-induced changes in soil chemistry can pro-
vide additional benefits, such as metal immobilization and
stabilization (Uchimiya et al. 2012a, b). However, little is
known about biochar role in reducing the phytoavailability
of heavy metals and phytotoxicity to plants in metal-polluted
soils (Beesley et al. 2011).

The emergent wetland species such as Juncus subsecundus
N.A. Wakef. (family Juncaceae) are often used in constructed
wetlands (Zhang et al. 2011a, b). In our previous studies, the
growth and biomass of J. subsecundus were significantly
decreased by Cd additions (Zhang et al. 2011b, 2012b). Some

studies have found that an addition of biochar decreased the
soil Cd phytoavailability (Namgay et al. 2010; Park et al.
2011a) and decreased Cd uptake and translocation in rice
(Cui et al. 2011). However, no previous study has quantified
the influence of biochars on plant growth, Cd uptake, and
translocation in emergent wetland plant species used in con-
structed wetlands. Hence, the objectives of this study were to
investigate (1) the impact of biochars derived from different
sources (pyrolysis of oil mallee or wheat chaff at 550 °C) at
different application rates on soil Cd immobilization and
phytoavailability and (2) the effect of biochars on wetland
plant growth, Cd concentration, accumulation, and transloca-
tion in J. subsecundus in Cd-contaminated soils under water-
logged conditions.

2 Materials and methods

2.1 Biochar characterization

Biochars made from oil mallee (whole plants) or wheat chaff
(Pacific Pyrolysis Pty Ltd, NSW, Australia) were assessed for
basic characteristics (Table 1). The pH and electrical conduc-
tivity (EC) of biochar were measured in water at 1:5 (w/v)
ratios. The pHwas alsomeasured in 0.01MCaCl2 at 1:5 (w/v)
ratio. A subsample of biochar was finely ground before total
carbon and nitrogen contents were determined by dry com-
bustion analysis using an elementar (vario MACRO CNS;
Elementar, Germany). Cation exchange capacity (CEC) was
determined as described by Gillman and Sumpter (1986). The
ammonium (NH4

+) and nitrate (NO3
−) contents were deter-

mined by extracting with 0.5 M K2SO4 and analyzing the
extract colorimetrically for NH4

+ (Krom 1980; Searle 1984)
and NO3

− (Kamphake et al. 1967; Kempers and Luft 1988) on
an automated flow injection Skalar auto-analyzer (Skalar San
Plus). The biochars were out-gassed under vacuum at 105 °C
for 8 h using VacPrep before measuring their pore volumes
using BET (Micromeritics, Gemini). Proximate analysis (i.e.,
determination of moisture, volatile matter, fixed carbon, ash,
and other properties by prescribed methods) was used to
assess ash content by heating biochar to 750 °C for 6 h
according to ASTM International (2007). Total content of
the elements in ash was quantified by ICP-AES (Spectro
CIROS, CCD, Germany) after digestion in HNO3.

2.2 Preparation of contaminated soil

Soil without detectable Cd was collected from Gingin,
Western Australia (31°46′ S, 115°86′E), air-dried, and
sieved through a 2-mm mesh. This soil, used as media in
constructed wetlands for treatment of stormwater (Zhang et
al. 2011a, b, 2012b), was sandy loam, containing coarse
sand (200–2,000 μm) 873 gkg−1, fine sand (20–200 μm)
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79 gkg−1, silt (2–20 μm) 19 gkg−1, and clay (<2 μm) 29 g
kg−1. Soil chemical properties were: pHwater 6.9, pHCaCl2

5.9, EC 0.034 dS m−1, total organic carbon 3.9 gkg−1, total
nitrogen 0.22 gkg−1, total phosphorus 0.12 gkg−1, total Cd
<0.0007 mg kg−1, total copper (Cu) 1.3 mg kg−1, total lead
(Pb) 1.8 mg kg−1, and total zinc (Zn) 1.7 mg kg−1.

Cadmium (as CdCl2×2 1/2 H2O, analytical grade, Ajax
Chemicals, Sydney, Australia) was dissolved in Milli-Q
water and added to soil at concentrations of 0, 10, or
50 mg Cd kg−1. The basal nutrients in solution were added
to all treatments at the following rates (in milligrams per
kilogram of soil): 33.3 nitrogen (N), 20.5 phosphorous (P),
88.7 K, S 34.2, Ca 41.0, Cl 72.5, Mg 3.95, Mn 3.26, Zn
2.05, Cu 0.51, B 0.12, Co 0.11, and Mo 0.08 and were
mixed uniformly.

Biochars derived from oil mallee or wheat chaff were
passed through a 2-mm sieve after drying at 70 °C for
5 days in a forced-air cabinet. The biochars were uniformly
mixed into soils at the rate of 0.5 or 5 % (w/w), in addition

to a non-biochar treatment. The amended soils were placed
in plastic bags and equilibrated in a dark room at 25 °C for
3 weeks. The soils were mixed twice every week, and the
moisture content was kept at 10 % (w/w). The soil samples
were collected after equilibration and analyzed for soil pH
and extractable Cd.

2.3 Experimental setup

The experiment was set up in a complete randomized block
design (three Cd treatments×five biochar additions) with
three replicates. Based on the previous experiments (Zhang
et al. 2011b, 2012b), the emergent wetland plant species J.
subsecundus was selected for this study conducted in a
glasshouse at The University of Western Australia (31°58′
S, 115°49′ E) with controlled day/night temperatures of 25/
20 °C under natural light conditions from mid-October to
mid-December, 2011. The seedlings of J. subsecundus
were collected from the local nursery and transplanted
(with initial plant fresh weight 10.5±0.4 g per pot) into
3.8-L pots (170 mm in diameter at the top and 180 mm
in height) containing 3 kg of soil per pot. The pots were
watered with deionized water to achieve a water layer of
15 mm above the soil surface and maintained by refilling
twice a week.

2.4 Sampling and measurements

The shoot number and the longest shoot height were mea-
sured weekly after plant establishment. The plants were
harvested after 9 weeks of growth. The soil samples from
the pots were collected and analyzed for pH and extractable
Cd. Shoots were cut just above the soil surface and their
base was washed with deionized water. Each pot was then
excavated, and the roots (including rhizomes) were separated
from soil by washing with running tap water over a mesh and
rinsing with deionized water three times. The subsamples of
roots were collected for root length analysis, which were
measured using a gridline intercept method (Newman 1966).
All samples were dried to a constant weight at 70 °C for 5 days
in a forced-air cabinet, weighed for dry weight (DW) biomass,
and ground to pass a 0.75-mm mesh. The concentration of Cd
in plant tissues was determined by inductively coupled plasma
optical emission spectrometry (ICP-OES; Optima 5300DV,
PerkinElmer, Shelton, USA) after digesting plant material in
a heated mixture of concentrated nitric and perchloric acids
(Bassett et al. 1978).

The pHCaCl2 and EC (5:1 solution/soil) were determined
by a Thermo Scientific Orion Star Series meter (Thermo
Fisher Scientific Inc., USA). The concentration of the ex-
tractable Cd in soil samples was measured by ICP-OES after
extraction and filtration. Briefly, soil (4 g) was shaken with
0.01 M CaCl2 (20 mL) for 4 h or 0.05 M EDTA (pH 7.0,

Table 1 Characteristics of the two biochars used in the study

Properties Oil mallee Wheat chaff

Pyrolysis temperature (°C) 550 550

pH (H2O) 7.51 9.00

pH (CaCl2) 7.20 8.49

Carbon (%) 67.01 56.63

Nitrogen (%) 0.54 2.1

C/N ratio 125 27

NH4–N (mg kg−1) <0.1 1.9

NO3–N (mg kg−1) <0.2 <0.1

CEC (m.e./100 g C) 11.25 30.43

EC (mS cm−1) 0.852 7.66

Pore volume (m2 g−1) 14.40 190.08

Proximal analysis (%)

Ash 8.6 16.2

Silicon (SiO2) 38.6 53.3

Aluminum (Al2O3) 4.5 2.33

Iron (Fe2O3) 3.0 2.44

Calcium (CaO) 34.7 5.2

Magnesium (MgO) 8.8 3.91

Sodium (Na2O) 1.5 0.27

Potassium (K2O) 6.3 21.8

Titanium (TiO2) 0.24 0.16

Manganese (Mn3O4) 0.68 0.22

Phosphorus (P2O5) 0.94 7.8

Sulfur (SO3) 1.3 2.32

Strontium (SrO) 0.26 0.04

Barium (BaO) 0.06 0.08

Zinc (ZnO) 0.05 0.04

Vanadium (V2O5) 0.01 <0.02
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20 mL) for 1 h at 25 °C on an end-over-end shaker
(McGrath 1996). Extract was filtered through a 0.45-μm
membrane Acrodisc® syringe filter.

2.5 Data calculation

The soil Cd immobilization efficiency was calculated as:

Cd immobilization efficiency %ð Þ ¼ 1� extractable Cd in biochar treatment extractable Cd in non� biochar treatment=ð Þ � 100

ð1Þ

The shoot or root concentration factor (SCF or RCF) was
calculated as:

SCF or RCF ¼ Cd concentration in shoots or roots Cd concentration in soils= ð2Þ

The translocation factor (TF) was calculated as:

TF %ð Þ ¼ Cd concentration in shoot Cd concentration in root=ð Þ � 100 ð3Þ

Total accumulation of Cd in plants, expressed as microgram
per pot, was calculated as:

Total Cd accumulation ¼ Cd concentration in shoots� shoot DWð Þ þ Cd concentration in roots� root DWð Þ ð4Þ

The percentage removal of Cd by plants was calculated as:

Removal of Cd by plants %ð Þ ¼ total Cd accumulation in plants total added Cd in soil=ð Þ � 100 ð5Þ

2.6 Statistical analyses

Statistical analyses were carried out using IBM® SPSS®
version 19. Two-way analysis of variance was used to detect
significant effects of Cd and biochars on all measured
parameters. Least significant difference (LSD) was applied
to test significance between means. The significant Pearson's
correlations between the soil pH or Cd concentrations and
measured parameters of plant tissues after 9 weeks of J.
subsecundus growth were tested.

3 Results

3.1 Initial pH and extractable Cd in soil after incubation

The soil pH increased significantly with the biochar addi-
tions, but was not significantly influenced by Cd treatments
after 3 weeks of soil incubation (Fig. 1). The highest pH was

in oil mallee biochar at the high application rate, followed
by wheat chaff biochar at the high application rate, then
biochars at the low application rates and the non-biochar
amendment.

The CaCl2-extractable soil Cd was significantly influenced
by the interaction of Cd and biochar additions (Table 2). More
than 96 % of CaCl2-extractable soil Cd was significantly
immobilized in the biochar treatments at the high application
rate regardless of biochar type and the rate of Cd addition. At
the low biochar application rate, the CaCl2-extractable soil Cd
immobilization was significantly higher with oil mallee bio-
char than wheat chaff biochar regardless of Cd treatments
(Fig. 2).

3.2 Plant growth

The longest shoot length, total shoot number, and root
length were significantly influenced by different Cd and
biochar additions as well as their interactions after 9 weeks
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of J. subsecundus growth (Fig. 3). In non-Cd-contaminated
soil, the total shoot number and total root length significantly
decreased with biochar treatments at the high application
rate compared to the control (without addition of Cd or
biochar), but the longest shoot length was not significantly
influenced by biochar additions. In the treatment with the
low rate of Cd addition, the longest shoot length and shoot
number significantly increased with biochar treatments at
the high application rate (except for shoot number in the
wheat chaff biochar) compared to the low-Cd-contaminated
soil without biochar, but no significant difference was
detected in the high-Cd-contaminated soil (see Fig. 3).

3.3 Plant biomass

The aboveground, belowground, and total biomass of plants
was significantly influenced by different Cd and biochar
additions as well as their interactions after 9 weeks of J.
subsecundus growth (Fig. 4). The biomass significantly
decreased with Cd additions. In non-Cd-contaminated soil,
the biomass was significantly decreased with biochar addi-
tions (except for the low rate of wheat chaff biochar) com-
pared to the control, with more decrease at the high

application rate of biochar derived from wheat chaff com-
pare to oil mallee, but the result was opposite at the low
application rate (see Fig. 4). In Cd-contaminated soil, the
total biomass did not significantly increase with biochar
additions compared to the Cd-contaminated soil without
biochar (see Fig. 4).

3.4 Concentration, accumulation, and translocation of Cd
in plants and removal by plants

The concentration, accumulation, and translocation of Cd in
plant tissues and Cd removal by plants were significantly
influenced by different Cd and biochar additions as well as
their interaction (except for Cd removal by plants) after
9 weeks of J. subsecundus growth (Tables 3 and 4). The
concentration of Cd in shoots and roots significantly in-
creased with Cd additions and significantly decreased with
the biochar additions in the high-Cd treatment, but not in the
low-Cd treatment (except for Cd concentration in shoots at
the high biochar application rate of wheat chaff biochar and
in roots at the high application rate of either biochar). The
SCF, RCF, and TF were significantly reduced by the biochar
additions (except for TF at the low-Cd treatment) compared
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Table 2 The CaCl2-extractable soil Cd influenced by different Cd and biochar additions after 3 weeks of soil incubation and 9 weeks of plant
growth

Cd treatment (mg kg−1) Biochar treatment (% w/w)

Non-biochar 0.5 % oil mallee 5 % oil mallee 0.5 % wheat chaff 5 % wheat chaff

After 3 weeks of soil incubation

0 Not detectable Not detectable Not detectable Not detectable Not detectable

10 0.68±0.06 a 0.05±0.01 b Not detectable 0.27±0.06 b Not detectable

50 11.56±0.35 a 3.36±0.23 c 0.23±0.04 d 5.86±0.13 b 0.40±0.16 d

After 9 weeks of plant growth

0 Not detectable Not detectable Not detectable Not detectable Not detectable

10 0.95±0.02 a 0.31±0.01 b 0.04±0.002 b 0.52±0.02 a, b 0.05±0.001 b

50 11.51±0.52 a 3.44±0.21 c 0.47±0.01 d 5.99±0.13 b 0.65±0.08 d

Means (± SE, n03) with different letters within the rows are significantly different based on LSD (p≤0.05)
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to non-biochar treatment (see Table 3). The total Cd accu-
mulation in plants and removal by shoots or whole plants
significantly decreased in the biochar treatments (except for
wheat chaff biochar at the low application rate in the low-Cd
treatment) compared to the non-biochar treatment (see
Table 4).

3.5 pH, EC, and extractable Cd in soil after plant growth

The pH, EC, and extractable Cd in soil were significantly
influenced by different Cd and biochar additions as well as
their interaction (except for soil EC) after 9 weeks of J.
subsecundus growth. The soil pH and CaCl2-extractable Cd
after 9 weeks of J. subsecundus growth (Fig. 5 and Table 2)
almost mirrored those after 3 weeks of soil incubation (see
Fig. 1 and Table 2). The soil EC significantly increased with
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biochar additions (see Fig. 5). The EDTA-extractable soil
Cd significantly decreased with biochar treatments (except
for oil mallee biochar at the low application rate) in the
high-Cd-contaminated soil, but not in the low-Cd-
contaminated soil regardless of biochar type and application
rate (Fig. 6).

3.6 Correlations between soil pH or soil extractable Cd
and plant parameters

Significant Pearson's correlation coefficients (r) were detected
between the soil extractable Cd concentrations and all mea-
sured parameters of plants after 9 weeks of J. subsecundus
growth (Table 5). The CaCl2-extractable soil Cd was highly
correlated with either the concentration or accumulation of Cd

in plants, whereas the EDTA-extractable soil Cd was highly
correlated with plant growth and biomass. Significant
Pearson's correlation coefficients (r) were also detected
between the soil pH and concentration or accumulation
of Cd in plant tissues (see Table 5).

4 Discussion

The immobilization of metals such as Cd by addition of
biochars has been reported in the recent literature (cf. Beesley
et al. 2011). For example, the addition (5 % w/w) of biochar
derived from chicken manure and green waste significantly
immobilized NH4NO3-extractable Cd in a metal-contaminated
soil, with a higher immobilization rate of Cd in chick manure
biochar than green waste biochar (Park et al. 2011a). In the
present study, the biochar additions significantly immobilized
CaCl2-extractable soil Cd (see Table 2), with higher efficiency
of immobilization at the high application rate (5 %) than the
low application rate (0.5 %), and in the oil mallee biochar than
wheat chaff biochar treatments at the low application rate (see
Fig. 2). Those results indicated that biochars derived from
different feedstocks, produced by different methods, and ap-
plied at different rates could show a varied potential of metal
immobilization. Hence, the findings are not easily transferable
to other biochar sources.

Metal ions are expected to interact with the biochar
organic carbon component via various mechanisms such as
(a) electrostatic interactions between metal cations and the
negatively charged biochar surface and (b) ionic exchange
between ionizable protons at the biochar surface, metal
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cations, etc. (cf. Uchimiya et al. 2012a, b). However, the
efficiency of metal immobilization/stabilization in biochar-
amended soils strongly depends on the release of native
inorganic components by the soils and biochars and the
influence of the biochar amendment on the soil pH and
dissolved organic carbon (Beesley et al. 2010). The in-
creased soil pH after biochar additions in the present study
(see Figs. 1 and 5) could partly account for Cd immobiliza-
tion. However, it remains unclear to what extent pH may
influence Cd partitioning among different soil pools.

There is no agreement in the literature as to which extrac-
tant most accurately estimates the phytoavailability of trace
metals in soils (Menzies et al. 2007). The use of various
extractants such as neutral salt solutions (i.e., CaCl2 and
NH4NO3) and complexing agents (i.e., EDTA and diethy-
lene triamine pentaacetic acid (DTPA)) could result in ex-
traction of different chemical fractions of metals. For
example, the CaCl2-extractable soil Cd significantly de-
creased with additions of biochar produced from wheat
straw in a contaminated paddy soil. The DTPA-extractable
Cd was not significantly changed in the first year after
application of biochar, but significantly reduced in the sec-
ond year after application in a 2-year paddy field experiment
compared to non-biochar (Cui et al. 2011). In the present
study, the CaCl2-extractable soil Cd significantly decreased
(see Fig. 2) and the EDTA-extractable Cd significantly
decreased with biochar additions (except for oil mallee bio-
char at the low application rate) in the high-Cd treatment,
but not in the low-Cd treatment (see Fig. 6).

A comprehensive study by Menzies et al. (2007) regard-
ing the evaluation of a single extractant for estimation of the
phytoavailable metals in soils emphasized that neutral salt
solution tended to provide the best relationship between soil
extractable metal and plant tissue accumulation, whereas
complexing agents or acid extractants (e.g., HCl) were gen-
erally poorly correlated to plant uptake. Although CaCl2-
and EDTA-extractable Cd were both significantly correlated
to plant Cd uptake and plant growth in the present study,

CaCl2-extractable Cd was better correlated to plant Cd up-
take and EDTA-extractable Cd was better correlated with
plant growth and biomass (see Table 5). The EDTA extrac-
tion was tentatively proposed to measure the pool of a metal
that can be released from the soil solid phase into solution
through forming chelates, which is generally accepted as
indicative of accessibility to plant root uptake (Quevauviller
2002). Accordingly, higher EDTA extractability refers to a
smaller fraction of bounded metals. In the present study, the
concentration of Cd in shoots and roots significantly de-
creased with the biochar additions in the high-Cd treatment,
but mostly not in the low-Cd treatment (see Table 3), which
was reflected in the EDTA-extractable soil Cd that was not
significantly different in the low-Cd-contaminated soil re-
gardless of the presence or absence of biochar additions (see
Fig. 6). Accordingly, the SCFs and RCFs were significantly
lower in the biochar treatments than without, whereas the
Cd TFs were similar in the low-Cd treatment (except for the
high wheat chaff biochar), but lower in the high-Cd treat-
ment compared to the non-biochar treatment (see Table 3),
indicating that the addition of biochars influenced plant
uptake, but less so Cd translocation in plants, at least in
the relatively low-Cd-contaminated soils.

Plants could mediate the transformation, mobility, and
bioavailability of metals, especially in the rhizosphere due
to plant–soil–microbe interactions (Park et al. 2011b). In our
previous study with the same wetland species and Cd-
contaminated soil as in this study, the pH was significantly
lower in the rhizosphere than non-rhizosphere and signifi-
cantly decreased with the Cd additions in the rhizosphere
after 10 weeks of J. subsecundus growth (Zhang et al.
2012b). The pH changes in the rhizosphere could influence
Cd speciation and bioavailability in media, possibly result-
ing in varied Cd uptake by plants. Nevertheless, recent
studies have indicated that the transformation of metals in
soils is a dynamic process, meaning phytoavailability may
change with time (Rao et al. 2008) and is therefore difficult
to measure (Moreno-Jiménez et al. 2010).

Table 5 Pearson's correlation
coefficients (r) between the soil
pH or Cd concentrations and
measured parameters of plant
tissues after 9 weeks of J.
subsecundus growth

NS not significant

*p≤0.05, significant; **p≤0.01,
significant; ***p≤0.001,
significant

Measured plant parameter CaCl2-extractable Cd EDTA-extractable Cd pHCaCl2

Shoot Cd concentration 0.97*** 0.71*** −0.60***

Root Cd concentration 0.95*** 0.81*** −0.54***

Shoot Cd accumulation 0.93*** 0.73*** −0.61***

Root Cd accumulation 0.95*** 0.79*** −0.57***

Aboveground biomass −0.47** −0.70*** 0.42**

Belowground biomass −0.41** −0.68*** 0.17NS

Total biomass −0.45** −0.69*** 0.35*

The longest shoot height −0.50*** −0.74*** 0.48**

Total shoot number −0.47** −0.72*** 0.29NS

Total root length −0.42** −0.69*** 0.19NS
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A plant growth response to biochar-amended soil has
been variable, with both positive and negative results
reported in field and greenhouse studies (Lehmann and
Joseph 2009), but a meta-analysis showed a small positive
overall effect on plant growth (Jeffery et al. 2011). Even
though studies on the effect of biochar on plant growth were
mostly conducted in greenhouses (e.g., Buss et al. 2011;
Namgay et al. 2010; Park et al. 2011a; Solaiman et al. 2012)
and field sites (e.g., Jones et al. 2012; Solaiman et al. 2010)
with dryland crops, few studies have been carried out in the
field with wetland plants (e.g., Asai et al. 2009; Zhang et al.
2010, 2012a). For instance, the amendments of biochar
produced by pyrolysis of the wheat straw at 350–550 °C
increased rice (Oryza sativa) yield regardless of fertilization
with N in a paddy field at Tai Lake plain, China (Zhang et
al. 2010). The application of biochar produced from wood
residues (e.g., teak and rosewood) by the earth mound
method increased rice grain yields in paddy fields with
low P availability and improved the response to N and NP
chemical fertilizer treatments, but the biochar decreased
grain yields in soils with a low indigenous N supply (Asai
et al. 2009). In the present study, the addition of biochars,
especially at the high application rate, had a significant
negative effect on growth of an emergent wetland species
in waterlogged soil without Cd addition (see Figs. 3 and 4).
These results indicated that the effect of biochar application
on plant growth could highly depend on soil conditions such
as pH, EC, moisture, organic matter, and fertility as well as
plant species.

The soil pH (see Figs. 1 and 5) and EC (see Fig. 5)
significantly increased with the addition of biochars in the
present study, but those increases did not influence plant
growth. The nutrient availability in soil could probably be
excluded as a reason because the basal nutrients were added
to the soil in the present study. Furthermore, no significant
difference in the concentrations of N and P in plant shoots
was detected between control (no Cd or biochar addition)
and biochar treatments without Cd (data not shown). How-
ever, the redox status (Eh) effect in the waterlogged soil
might not be totally excluded, particularly in the early stage
of plant development, even though wetland plants can trans-
port oxygen from top tissues to roots. The addition of bio-
chars might decrease the Eh in the media due to high organic
C in biochars (see Table 1) in which labile components of
biochar could be decomposed (Zhang et al. 2010).

The negative effect of the biochar additions on plant
growth was possibly related to the volatile organic com-
pounds in biochars because the presence of individual vol-
atile organic compounds in soil system can trigger various
plant and microbial responses (Spokas et al. 2011). The
studies conducted by Deenik et al. (2010, 2011) have indi-
cated that relatively high concentrations of volatile matter in
biochar had a negative effect on plant growth, but this effect

would decrease or disappear with time (i.e., after the first
year of cropping). Nevertheless, the mechanism behind the
decrease of plant growth by biochar addition is still un-
known. Hence, further studies are needed to clarify whether
volatile organic compounds in biochars are more effective
on plant growth in waterlogged than dryland soils.

Recent studies have observed that the addition of biochars
could mitigate metal toxicity to plants, resulting in a decrease
in metal uptake and an increase in plant growth (e.g., Ahmad
et al. 2012; Buss et al. 2011; Park et al. 2011a). For example,
application of a high-temperature (600–800 °C) biochar pro-
duced from forest green waste significantly increased the
young quinoa (Chenopodium quinoa) performance under
Cu stress. At the 4 % w/w biochar application rate, the plants
with 200 mg kg−1 Cu reached almost the same biomass as in
the control after 3 weeks of Cu treatments. Less Cu entered
the plant tissues in the presence than absence of the biochar
(Buss et al. 2011). The biochar derived from pyrolysis of oak
wood at 400 °C at 5 % (w/w) was the most effective in
decreasing the bioavailability of Pb among the amendments
(mussel shell, cow bone, and biochar) and increasing lettuce
(Lactuca sativa) seed germination by 360 % and root length
by 189 % in the contaminated military shooting range soil
compared to the unamended soil (Ahmad et al. 2012). In the
present study, however, an addition of biochars significantly
reduced Cd uptake by plants, but did not improve plant
growth in Cd-contaminated soils, as also found by others
(e.g., Cui et al. 2011; Namgay et al. 2010). For instance, the
concentration and accumulation of Cd in rice significantly
decreased with additions of biochar produced from wheat
straw, but rice grain yield was not significantly different
between biochar and non-biochar applications in Cd-
contaminated paddy soil (Cui et al. 2011). The concentra-
tions of Cd in shoots significantly decreased with the addi-
tions of wood bluegum (Eucalyptus saligna) biochar,
especially at the high-Cd treatment, but the biomass of maize
(Zea mays) was not significantly influenced by the additions
of biochar in either 10 or 50 mg kg−1 Cd-contaminated soils
after 10 weeks of growth (Namgay et al. 2010). These results
indicated that there was a significant interactive effect of
metals and biochar additions on plant growth and metal
uptake, varying with different plant species, application
rates, and the nature of biochars as well as soil contamination
with either single or mixed metals.

5 Conclusions

Although biochar amendment significantly immobilized soil
Cd and reduced its phytoavailability, there was little growth
response of the wetland species in Cd-contaminated soil
during 9 weeks, probably due to the interaction between
biochars and waterlogged environment. Currently, the
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scarcity of data limits evaluation of the potential of biochars as
an amendment in metal-contaminated substrates of constructed
wetlands. Nevertheless, influence of biochars on wetland plant
growth and metal uptake is likely to be complicated. Hence,
further studies on different plant species, varied sources, and
application rates of biochars and metal-contaminated levels are
required to elucidate the underlying mechanisms before prac-
tical application can be considered.
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